import torch import torch.nn as nn import math class PositionalEncoding(nn.Module): def __init__(self, d_model, max_len=100): super().__init__() pe = torch.zeros(max_len, d_model) pos = torch.arange(0, max_len).unsqueeze(1) div = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(pos * div) pe[:, 1::2] = torch.cos(pos * div) self.register_buffer('pe', pe.unsqueeze(0)) def forward(self, x): return x + self.pe[:, :x.size(1)].to(x.device) class ScaledDotProductAttention(nn.Module): def forward(self, Q, K, V, mask=None): d_k = Q.size(-1) scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(d_k) attn = torch.softmax(scores, dim=-1) return torch.matmul(attn, V), attn class MultiHeadAttention(nn.Module): def __init__(self, d_model, num_heads): super().__init__() assert d_model % num_heads == 0 self.d_k = d_model // num_heads self.num_heads = num_heads self.Q = nn.Linear(d_model, d_model) self.K = nn.Linear(d_model, d_model) self.V = nn.Linear(d_model, d_model) self.out = nn.Linear(d_model, d_model) self.attn = ScaledDotProductAttention() self.last_attn_weights = None def forward(self, q, k, v, mask=None): B = q.size(0) Q = self.Q(q).view(B, -1, self.num_heads, self.d_k).transpose(1, 2) K = self.K(k).view(B, -1, self.num_heads, self.d_k).transpose(1, 2) V = self.V(v).view(B, -1, self.num_heads, self.d_k).transpose(1, 2) out, attn = self.attn(Q, K, V) self.last_attn_weights = attn.detach().cpu() out = out.transpose(1, 2).contiguous().view(B, -1, self.num_heads * self.d_k) return self.out(out) class FeedForward(nn.Module): def __init__(self, d_model, d_ff): super().__init__() self.ff = nn.Sequential( nn.Linear(d_model, d_ff), nn.ReLU(), nn.Linear(d_ff, d_model) ) def forward(self, x): return self.ff(x) class EncoderLayer(nn.Module): def __init__(self, d_model, num_heads, d_ff): super().__init__() self.attn = MultiHeadAttention(d_model, num_heads) self.ff = FeedForward(d_model, d_ff) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) def forward(self, x): x2 = self.attn(x, x, x) x = self.norm1(x + x2) x2 = self.ff(x) x = self.norm2(x + x2) return x