1. 初始化代码;
This commit is contained in:
39
confs/logging.conf
Normal file
39
confs/logging.conf
Normal file
@@ -0,0 +1,39 @@
|
||||
# logging.conf
|
||||
[loggers]
|
||||
keys=root,my_module
|
||||
|
||||
[handlers]
|
||||
keys=consoleHandler,fileHandler
|
||||
|
||||
[formatters]
|
||||
keys=simpleFormatter,detailedFormatter
|
||||
|
||||
[logger_root]
|
||||
level=INFO
|
||||
handlers=consoleHandler
|
||||
|
||||
[logger_my_module]
|
||||
level=DEBUG
|
||||
qualname=my_module
|
||||
handlers=fileHandler
|
||||
propagate=0
|
||||
|
||||
[handler_consoleHandler]
|
||||
class=StreamHandler
|
||||
level=INFO
|
||||
formatter=simpleFormatter
|
||||
args=(sys.stdout,)
|
||||
|
||||
[handler_fileHandler]
|
||||
class=FileHandler
|
||||
level=DEBUG
|
||||
formatter=detailedFormatter
|
||||
args=('app.log', 'a')
|
||||
|
||||
[formatter_simpleFormatter]
|
||||
format=%(asctime)s - %(name)s - %(levelname)s - %(message)s
|
||||
datefmt=%Y-%m-%d %H:%M:%S
|
||||
|
||||
[formatter_detailedFormatter]
|
||||
format=%(asctime)s - %(name)s - %(levelname)s - %(module)s:%(lineno)d - %(message)s
|
||||
datefmt=%Y-%m-%d %H:%M:%S
|
||||
16
models/base.py
Normal file
16
models/base.py
Normal file
@@ -0,0 +1,16 @@
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
|
||||
class BaseModelRunner(ABC):
|
||||
|
||||
@abstractmethod
|
||||
def forward(self):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def run_test(self):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def run(self):
|
||||
pass
|
||||
0
models/bert.py
Normal file
0
models/bert.py
Normal file
0
models/layers/__init__.py
Normal file
0
models/layers/__init__.py
Normal file
74
models/layers/transformer.py
Normal file
74
models/layers/transformer.py
Normal file
@@ -0,0 +1,74 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import math
|
||||
|
||||
|
||||
class PositionalEncoding(nn.Module):
|
||||
def __init__(self, d_model, max_len=100):
|
||||
super().__init__()
|
||||
pe = torch.zeros(max_len, d_model)
|
||||
pos = torch.arange(0, max_len).unsqueeze(1)
|
||||
div = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
|
||||
pe[:, 0::2] = torch.sin(pos * div)
|
||||
pe[:, 1::2] = torch.cos(pos * div)
|
||||
self.register_buffer('pe', pe.unsqueeze(0))
|
||||
|
||||
def forward(self, x):
|
||||
return x + self.pe[:, :x.size(1)].to(x.device)
|
||||
|
||||
class ScaledDotProductAttention(nn.Module):
|
||||
def forward(self, Q, K, V, mask=None):
|
||||
d_k = Q.size(-1)
|
||||
scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(d_k)
|
||||
attn = torch.softmax(scores, dim=-1)
|
||||
return torch.matmul(attn, V), attn
|
||||
|
||||
class MultiHeadAttention(nn.Module):
|
||||
def __init__(self, d_model, num_heads):
|
||||
super().__init__()
|
||||
assert d_model % num_heads == 0
|
||||
self.d_k = d_model // num_heads
|
||||
self.num_heads = num_heads
|
||||
self.Q = nn.Linear(d_model, d_model)
|
||||
self.K = nn.Linear(d_model, d_model)
|
||||
self.V = nn.Linear(d_model, d_model)
|
||||
self.out = nn.Linear(d_model, d_model)
|
||||
self.attn = ScaledDotProductAttention()
|
||||
self.last_attn_weights = None
|
||||
|
||||
def forward(self, q, k, v, mask=None):
|
||||
B = q.size(0)
|
||||
Q = self.Q(q).view(B, -1, self.num_heads, self.d_k).transpose(1, 2)
|
||||
K = self.K(k).view(B, -1, self.num_heads, self.d_k).transpose(1, 2)
|
||||
V = self.V(v).view(B, -1, self.num_heads, self.d_k).transpose(1, 2)
|
||||
out, attn = self.attn(Q, K, V)
|
||||
self.last_attn_weights = attn.detach().cpu()
|
||||
out = out.transpose(1, 2).contiguous().view(B, -1, self.num_heads * self.d_k)
|
||||
return self.out(out)
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, d_model, d_ff):
|
||||
super().__init__()
|
||||
self.ff = nn.Sequential(
|
||||
nn.Linear(d_model, d_ff),
|
||||
nn.ReLU(),
|
||||
nn.Linear(d_ff, d_model)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.ff(x)
|
||||
|
||||
class EncoderLayer(nn.Module):
|
||||
def __init__(self, d_model, num_heads, d_ff):
|
||||
super().__init__()
|
||||
self.attn = MultiHeadAttention(d_model, num_heads)
|
||||
self.ff = FeedForward(d_model, d_ff)
|
||||
self.norm1 = nn.LayerNorm(d_model)
|
||||
self.norm2 = nn.LayerNorm(d_model)
|
||||
|
||||
def forward(self, x):
|
||||
x2 = self.attn(x, x, x)
|
||||
x = self.norm1(x + x2)
|
||||
x2 = self.ff(x)
|
||||
x = self.norm2(x + x2)
|
||||
return x
|
||||
91
models/transformer.py
Normal file
91
models/transformer.py
Normal file
@@ -0,0 +1,91 @@
|
||||
import logging
|
||||
from torchvision import datasets, transforms
|
||||
from tools.devices import DeviceManager
|
||||
from models.layers.transformer import *
|
||||
from models.base import BaseModelRunner
|
||||
from tools.visualize import visualize_attention_heads, tqdm_logging
|
||||
|
||||
|
||||
class Transformer(BaseModelRunner):
|
||||
|
||||
def __init__(self, args: dict):
|
||||
logging.info("Initializing Transformer Model")
|
||||
self.args = args
|
||||
logging.info(f"ALL arguments passed: {args.items()}")
|
||||
self.model = TransformerEncoder()
|
||||
self.device = DeviceManager().device
|
||||
self.model.to(self.device)
|
||||
logging.info("Model transform from cpu to {}".format(str(self.device)))
|
||||
|
||||
def forward(self):
|
||||
self.model()
|
||||
|
||||
def run(self):
|
||||
|
||||
logging.info("Loading MNIST dataset from network.")
|
||||
transform = transforms.ToTensor()
|
||||
logging.info("Loading MNIST training dataset from network...")
|
||||
train_dataset = datasets.MNIST(root=".\data", train=True, transform=transform, download=True)
|
||||
test_dataset = datasets.MNIST(root=".\data", train=False, transform=transform, download=True)
|
||||
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
|
||||
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)
|
||||
logging.info("Loaded MNIST dataset from network.")
|
||||
|
||||
optimizer = torch.optim.Adam(self.model.parameters(), lr=1e-3)
|
||||
loss_fn = nn.CrossEntropyLoss()
|
||||
|
||||
for epoch in range(5):
|
||||
self.model.train()
|
||||
total_loss = 0
|
||||
len(train_loader)
|
||||
for images, labels in train_loader:
|
||||
|
||||
images = images.squeeze(1).to(self.device)
|
||||
labels = labels.to(self.device)
|
||||
predicts = self.model(images)
|
||||
loss = loss_fn(predicts, labels)
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
total_loss += loss.item()
|
||||
tqdm_logging(f"Epoch {epoch + 1}, Loss: {total_loss / len(train_loader):.4f}", epoch, 5)
|
||||
|
||||
correct, total = 0, 0
|
||||
self.model.eval()
|
||||
with torch.no_grad():
|
||||
for images, labels in test_loader:
|
||||
images = images.squeeze(1).to(self.device)
|
||||
labels = labels.to(self.device)
|
||||
predicts = self.model(images)
|
||||
predicted = predicts.argmax(dim=1)
|
||||
correct += (predicted == labels).sum().item()
|
||||
total += labels.size(0)
|
||||
logging.info(f"Test Accuracy: {correct / total:.4f}")
|
||||
return self.model, test_loader
|
||||
|
||||
def run_test(self):
|
||||
model, test_loader = self.run()
|
||||
visualize_attention_heads(model, test_loader, device=self.device)
|
||||
|
||||
|
||||
class TransformerEncoder(nn.Module):
|
||||
def __init__(self, input_dim=28, d_model=128, num_heads=4, d_ff=256, num_layers=2, seq_len=28):
|
||||
super().__init__()
|
||||
self.attn_weights = None
|
||||
self.input_fc = nn.Linear(input_dim, d_model)
|
||||
self.pos = PositionalEncoding(d_model, max_len=seq_len)
|
||||
self.layers = nn.ModuleList([
|
||||
EncoderLayer(d_model, num_heads, d_ff)
|
||||
for _ in range(num_layers)
|
||||
])
|
||||
self.classifier = nn.Linear(d_model, 10)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.input_fc(x)
|
||||
x = self.pos(x)
|
||||
layer = None
|
||||
for layer in self.layers:
|
||||
x = layer(x)
|
||||
self.attn_weights = layer.attn.last_attn_weights
|
||||
x = x.mean(dim=1)
|
||||
return self.classifier(x)
|
||||
@@ -1,168 +0,0 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torchvision import datasets, transforms
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
import math
|
||||
|
||||
|
||||
def get_device():
|
||||
if torch.cuda.is_available():
|
||||
return torch.device('cuda:0')
|
||||
if torch.backends.mps.is_available():
|
||||
return torch.device('mps')
|
||||
return torch.device('cpu')
|
||||
|
||||
device = get_device()
|
||||
print("Using device: " + device)
|
||||
|
||||
class PositionalEncoding(nn.Module):
|
||||
def __init__(self, d_model, max_len=100):
|
||||
super().__init__()
|
||||
pe = torch.zeros(max_len, d_model)
|
||||
pos = torch.arange(0, max_len).unsqueeze(1)
|
||||
div = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
|
||||
pe[:, 0::2] = torch.sin(pos * div)
|
||||
pe[:, 1::2] = torch.cos(pos * div)
|
||||
self.register_buffer('pe', pe.unsqueeze(0))
|
||||
|
||||
def forward(self, x):
|
||||
return x + self.pe[:, :x.size(1)].to(x.device)
|
||||
|
||||
class ScaledDotProductAttention(nn.Module):
|
||||
def forward(self, Q, K, V, mask=None):
|
||||
d_k = Q.size(-1)
|
||||
scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(d_k)
|
||||
attn = torch.softmax(scores, dim=-1)
|
||||
return torch.matmul(attn, V), attn
|
||||
|
||||
class MultiHeadAttention(nn.Module):
|
||||
def __init__(self, d_model, num_heads):
|
||||
super().__init__()
|
||||
assert d_model % num_heads == 0
|
||||
self.d_k = d_model // num_heads
|
||||
self.num_heads = num_heads
|
||||
self.Q = nn.Linear(d_model, d_model)
|
||||
self.K = nn.Linear(d_model, d_model)
|
||||
self.V = nn.Linear(d_model, d_model)
|
||||
self.out = nn.Linear(d_model, d_model)
|
||||
self.attn = ScaledDotProductAttention()
|
||||
self.last_attn_weights = None
|
||||
|
||||
def forward(self, q, k, v, mask=None):
|
||||
B = q.size(0)
|
||||
Q = self.Q(q).view(B, -1, self.num_heads, self.d_k).transpose(1, 2)
|
||||
K = self.K(k).view(B, -1, self.num_heads, self.d_k).transpose(1, 2)
|
||||
V = self.V(v).view(B, -1, self.num_heads, self.d_k).transpose(1, 2)
|
||||
out, attn = self.attn(Q, K, V)
|
||||
self.last_attn_weights = attn.detach().cpu()
|
||||
out = out.transpose(1, 2).contiguous().view(B, -1, self.num_heads * self.d_k)
|
||||
return self.out(out)
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, d_model, d_ff):
|
||||
super().__init__()
|
||||
self.ff = nn.Sequential(
|
||||
nn.Linear(d_model, d_ff),
|
||||
nn.ReLU(),
|
||||
nn.Linear(d_ff, d_model)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.ff(x)
|
||||
|
||||
class EncoderLayer(nn.Module):
|
||||
def __init__(self, d_model, num_heads, d_ff):
|
||||
super().__init__()
|
||||
self.attn = MultiHeadAttention(d_model, num_heads)
|
||||
self.ff = FeedForward(d_model, d_ff)
|
||||
self.norm1 = nn.LayerNorm(d_model)
|
||||
self.norm2 = nn.LayerNorm(d_model)
|
||||
|
||||
def forward(self, x):
|
||||
x2 = self.attn(x, x, x)
|
||||
x = self.norm1(x + x2)
|
||||
x2 = self.ff(x)
|
||||
x = self.norm2(x + x2)
|
||||
return x
|
||||
|
||||
class TransformerEncoder(nn.Module):
|
||||
def __init__(self, input_dim=28, d_model=128, num_heads=4, d_ff=256, num_layers=2, seq_len=28):
|
||||
super().__init__()
|
||||
self.input_fc = nn.Linear(input_dim, d_model)
|
||||
self.pos = PositionalEncoding(d_model, max_len=seq_len)
|
||||
self.layers = nn.ModuleList([
|
||||
EncoderLayer(d_model, num_heads, d_ff)
|
||||
for _ in range(num_layers)
|
||||
])
|
||||
self.classifier = nn.Linear(d_model, 10)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.input_fc(x)
|
||||
x = self.pos(x)
|
||||
layer = None
|
||||
for layer in self.layers:
|
||||
x = layer(x)
|
||||
self.attn_weights = layer.attn.last_attn_weights
|
||||
x = x.mean(dim=1)
|
||||
return self.classifier(x)
|
||||
|
||||
def train_and_test():
|
||||
transform = transforms.ToTensor()
|
||||
train_dataset = datasets.MNIST(root=".\data", train=True, transform=transform, download=True)
|
||||
test_dataset = datasets.MNIST(root=".\data", train=False, transform=transform, download=True)
|
||||
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
|
||||
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)
|
||||
|
||||
model = TransformerEncoder().to(device)
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
|
||||
loss_fn = nn.CrossEntropyLoss()
|
||||
|
||||
for epoch in range(5):
|
||||
model.train()
|
||||
total_loss = 0
|
||||
for images, labels in train_loader:
|
||||
images = images.squeeze(1).to(device)
|
||||
labels = labels.to(device)
|
||||
preds = model(images)
|
||||
loss = loss_fn(preds, labels)
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
total_loss += loss.item()
|
||||
print(f"Epoch {epoch+1}, Loss: {total_loss / len(train_loader):.4f}")
|
||||
|
||||
correct, total = 0, 0
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
for images, labels in test_loader:
|
||||
images = images.squeeze(1).to(device)
|
||||
labels = labels.to(device)
|
||||
preds = model(images)
|
||||
predicted = preds.argmax(dim=1)
|
||||
correct += (predicted == labels).sum().item()
|
||||
total += labels.size(0)
|
||||
print(f"Test Accuracy: {correct / total:.4f}")
|
||||
return model, test_loader
|
||||
|
||||
def visualize_attention_heads(model, test_loader):
|
||||
model.eval()
|
||||
images, _ = next(iter(test_loader))
|
||||
image = images[0].unsqueeze(0).squeeze(1).to(device)
|
||||
with torch.no_grad():
|
||||
_ = model(image)
|
||||
|
||||
attn_weights = model.attn_weights[0] # shape: [num_heads, seq_len, seq_len]
|
||||
num_heads = attn_weights.shape[0]
|
||||
|
||||
fig, axes = plt.subplots(1, num_heads, figsize=(num_heads * 3, 3))
|
||||
for i in range(num_heads):
|
||||
sns.heatmap(attn_weights[i], ax=axes[i], cbar=False)
|
||||
axes[i].set_title(f"Head {i}")
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
|
||||
if __name__ == "__main__":
|
||||
model, test_loader = train_and_test()
|
||||
visualize_attention_heads(model, test_loader)
|
||||
|
||||
0
tools/__init__.py
Normal file
0
tools/__init__.py
Normal file
17
tools/devices.py
Normal file
17
tools/devices.py
Normal file
@@ -0,0 +1,17 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from functools import cached_property
|
||||
|
||||
|
||||
class DeviceManager(object):
|
||||
|
||||
def __init__(self):
|
||||
self.device = self.__get_device()
|
||||
|
||||
@staticmethod
|
||||
def __get_device():
|
||||
if torch.cuda.is_available():
|
||||
return torch.device('cuda:0')
|
||||
if torch.backends.mps.is_available():
|
||||
return torch.device('mps')
|
||||
return torch.device('cpu')
|
||||
31
tools/visualize.py
Normal file
31
tools/visualize.py
Normal file
@@ -0,0 +1,31 @@
|
||||
import logging
|
||||
import sys
|
||||
import torch
|
||||
import seaborn as sns
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
def visualize_attention_heads(model, test_loader, device):
|
||||
model.eval()
|
||||
images, _ = next(iter(test_loader))
|
||||
image = images[0].unsqueeze(0).squeeze(1).to(device)
|
||||
with torch.no_grad():
|
||||
_ = model(image)
|
||||
|
||||
attn_weights = model.attn_weights[0] # shape: [num_heads, seq_len, seq_len]
|
||||
num_heads = attn_weights.shape[0]
|
||||
|
||||
fig, axes = plt.subplots(1, num_heads, figsize=(num_heads * 3, 3))
|
||||
for i in range(num_heads):
|
||||
sns.heatmap(attn_weights[i], ax=axes[i], cbar=False)
|
||||
axes[i].set_title(f"Head {i}")
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
|
||||
|
||||
def tqdm_logging(message, current, total):
|
||||
percentage = (current / total)
|
||||
arrow = '#' * int(round(percentage * 100) - 1)
|
||||
spaces = ' ' * (100 - len(arrow))
|
||||
logging.info(message + f" Processed: {arrow}{spaces} -> {percentage * 100:.2f} %")
|
||||
sys.stdout.flush()
|
||||
Reference in New Issue
Block a user