Files
nlp_learning/models/transformer.py
2025-12-30 22:42:47 +08:00

92 lines
3.5 KiB
Python

import logging
from torchvision import datasets, transforms
from tools.devices import DeviceManager
from models.layers.transformer import *
from models.base import BaseModelRunner
from tools.visualize import visualize_attention_heads, tqdm_logging
class Transformer(BaseModelRunner):
def __init__(self, args: dict):
logging.info("Initializing Transformer Model")
self.args = args
logging.info(f"ALL arguments passed: {args.items()}")
self.model = TransformerEncoder()
self.device = DeviceManager().device
self.model.to(self.device)
logging.info("Model transform from cpu to {}".format(str(self.device)))
def forward(self):
self.model()
def run(self):
logging.info("Loading MNIST dataset from network.")
transform = transforms.ToTensor()
logging.info("Loading MNIST training dataset from network...")
train_dataset = datasets.MNIST(root=".\data", train=True, transform=transform, download=True)
test_dataset = datasets.MNIST(root=".\data", train=False, transform=transform, download=True)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)
logging.info("Loaded MNIST dataset from network.")
optimizer = torch.optim.Adam(self.model.parameters(), lr=1e-3)
loss_fn = nn.CrossEntropyLoss()
for epoch in range(5):
self.model.train()
total_loss = 0
len(train_loader)
for images, labels in train_loader:
images = images.squeeze(1).to(self.device)
labels = labels.to(self.device)
predicts = self.model(images)
loss = loss_fn(predicts, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
tqdm_logging(f"Epoch {epoch + 1}, Loss: {total_loss / len(train_loader):.4f}", epoch, 5)
correct, total = 0, 0
self.model.eval()
with torch.no_grad():
for images, labels in test_loader:
images = images.squeeze(1).to(self.device)
labels = labels.to(self.device)
predicts = self.model(images)
predicted = predicts.argmax(dim=1)
correct += (predicted == labels).sum().item()
total += labels.size(0)
logging.info(f"Test Accuracy: {correct / total:.4f}")
return self.model, test_loader
def run_test(self):
model, test_loader = self.run()
visualize_attention_heads(model, test_loader, device=self.device)
class TransformerEncoder(nn.Module):
def __init__(self, input_dim=28, d_model=128, num_heads=4, d_ff=256, num_layers=2, seq_len=28):
super().__init__()
self.attn_weights = None
self.input_fc = nn.Linear(input_dim, d_model)
self.pos = PositionalEncoding(d_model, max_len=seq_len)
self.layers = nn.ModuleList([
EncoderLayer(d_model, num_heads, d_ff)
for _ in range(num_layers)
])
self.classifier = nn.Linear(d_model, 10)
def forward(self, x):
x = self.input_fc(x)
x = self.pos(x)
layer = None
for layer in self.layers:
x = layer(x)
self.attn_weights = layer.attn.last_attn_weights
x = x.mean(dim=1)
return self.classifier(x)